Parsing and display of math equations is included in this blog template. Parsing of math is enabled by remark-math
and rehype-katex
.
KaTeX and its associated font is included in _document.js
so feel free to use it in any pages.
^[For the full list of supported TeX functions, check out the KaTeX documentation]
Inline math symbols can be included by enclosing the term between the $
symbol.
Math code blocks is denoted by $$
.
The dollar signal displays without issue since only text without space and between two $
signs are considered as math symbols.2
Inline or manually enumerated footnotes are also supported. Click on the links above to see them in action.
Using matrix notation, let $n$ denote the number of observations and $k$ denote the number of regressors.
The vector of outcome variables $\mathbf{Y}$ is a $n \times 1$ matrix,
\mathbf{Y} = \left[\begin{array}
{c}
y_1 \\
. \\
. \\
. \\
y_n
\end{array}\right]
$$ \mathbf{Y} = \left[\begin{array} {c} y_1 \ . \ . \ . \ y_n \end{array}\right] $$
The matrix of regressors $\mathbf{X}$ is a $n \times k$ matrix (or each row is a $k \times 1$ vector),
\mathbf{X} = \left[\begin{array}
{ccccc}
x_{11} & . & . & . & x_{1k} \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
x_{n1} & . & . & . & x_{nn}
\end{array}\right] =
\left[\begin{array}
{c}
\mathbf{x}'_1 \\
. \\
. \\
. \\
\mathbf{x}'_n
\end{array}\right]
$$ \mathbf{X} = \left[\begin{array} {ccccc} x{11} & . & . & . & x{1k} \ . & . & . & . & . \ . & . & . & . & . \ . & . & . & . & . \ x{n1} & . & . & . & x{nn} \end{array}\right] = \left[\begin{array} {c} \mathbf{x}'_1 \ . \ . \ . \ \mathbf{x}'_n \end{array}\right] $$
The vector of error terms $\mathbf{U}$ is also a $n \times 1$ matrix.
At times it might be easier to use vector notation. For consistency I will use the bold small x to denote a vector and capital letters to denote a matrix. Single observations are denoted by the subscript.
Start: $$y_i = \mathbf{x}'_i \beta + u_i$$
Assumptions:
Aim: Find $\beta$ that minimises sum of squared errors:
$$ Q = \sum{i=1}^{n}{u_i^2} = \sum{i=1}^{n}{(y_i - \mathbf{x}'_i\beta)^2} = (Y-X\beta)'(Y-X\beta) $$
Solution: Hints: $Q$ is a $1 \times 1$ scalar, by symmetry $\frac{\partial b'Ab}{\partial b} = 2Ab$.
Take matrix derivative w.r.t $\beta$:
\begin{aligned}
\min Q & = \min_{\beta} \mathbf{Y}'\mathbf{Y} - 2\beta'\mathbf{X}'\mathbf{Y} +
\beta'\mathbf{X}'\mathbf{X}\beta \\
& = \min_{\beta} - 2\beta'\mathbf{X}'\mathbf{Y} + \beta'\mathbf{X}'\mathbf{X}\beta \\
\text{[FOC]}~~~0 & = - 2\mathbf{X}'\mathbf{Y} + 2\mathbf{X}'\mathbf{X}\hat{\beta} \\
\hat{\beta} & = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \\
& = (\sum^{n} \mathbf{x}_i \mathbf{x}'_i)^{-1} \sum^{n} \mathbf{x}_i y_i
\end{aligned}
$$ \begin{aligned} \min Q & = \min{\beta} \mathbf{Y}'\mathbf{Y} - 2\beta'\mathbf{X}'\mathbf{Y} + \beta'\mathbf{X}'\mathbf{X}\beta \ & = \min{\beta} - 2\beta'\mathbf{X}'\mathbf{Y} + \beta'\mathbf{X}'\mathbf{X}\beta \ \text{[FOC]}~~~0 & = - 2\mathbf{X}'\mathbf{Y} + 2\mathbf{X}'\mathbf{X}\hat{\beta} \ \hat{\beta} & = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \ & = (\sum^{n} \mathbf{x}_i \mathbf{x}'_i)^{-1} \sum^{n} \mathbf{x}_i y_i \end{aligned} $$